Posuzování změn v krajině pomocí dat Sentinel-3

Úvod do problematiky

Dynamika zemského povrchu představuje jednu z klíčových hnacích sil pro posuzování změn životního prostředí v různých měřítcích. Monitorovací činnosti hrají důležitou roli při odhalování a pochopení těchto vzorců a při měření odolnosti ekosystémů.

Data

Date	S-3 Image name
2017-05-05	S3A OL 1 EFR 20170505T080458 20170505T080758 20180419T032733 0179 017 192 2340 LR2 R NT 002
2017-05-10	S3A_OL_1_EFR20170510T073503_20170510T073803_20180419T173805_0179_017_263_2340_LR2_R_NT_002
2017-05-13	S3A OL 1 EFR 20170513T075729 20170513T080029 20180420T025347 0179 017 306 2340 LR2 R NT 002
2017-05-21	S3A OL 1 EFR 20170521T075000 20170521T075300 20180421T065708 0179 018 035 2340 LR2 R NT 002
2017 00 21	
2017-05-24	S3A OL 1 EFR 20170524T081227 20170524T081527 20180421T154649 0179 018 078 2340 LR2 R NT 002
2017-05-28	S3A OL 1 EFR 20170528T080842 20170528T081142 20180422T032713 0179 018 135 2340 LR2 R NT 002
201, 05 20	
2017-05-29	S3A OL 1 FER 20170529T074232 20170529T074532 20180422T061843 0180 018 149 2340 LR2 R NT 002
2017 05 25	

Otevření a průzkum dat ve SNAP

V prostředí SNAP si otevřete snímek z 10.5.2017 a vytvořte barevnou kompozici v pravých barvách.

Red: Oa08_radiance | Green: Oa06_radiance | Blue: Oa04_radiance

OLCI L1	- Tristimulus (modified)	aei
Red	Da08_radiance	•
Green:	0a86_radiance	¥
Blue	0a04_radiance	-
Stor	Express e RGE channels as virtual bands in current prod	ions are valid

Jelikož je snímek příliš tmavý v menu Color Manipulation upravte histogramy.

V tomto cvičení budeme používat Graph Builder, jelikož je nutné zpracovat více snímku najednou. Z tohoto důvodu si nejdříve vytvoříme graf z menu **Tools – Graph Builder** s postupem zpracování a následně necháme provést výpočty a úpravy družicových snímků.

Vzhledem k velikosti a počtu družicových snímků je potřeba nejdříve vytvořit Subset na rozsah území definovaný polygonem:

POLYGON ((32.401301 36.031754,34.667141 35.741352,34.374742 34.318205999999996,32.149456 34.612776,32.401301 36.031754))

Prvním krokem předzpracování je pak detekce a odstranění pixelů, které obsahují oblačnost, pomocí algoritmu Idepix. Pokud algoritmus není k dispozici v menu **Optical – Preprocessing – Masking – Idepix** je nutno si jej doinstalovat v menu **Tools – Plugins**.

Procesor IdePix dodávaný s aktuální verzí SNAP podporuje následující satelity/senzory: Sentinel-2 (MSI), Sentinel-3 (OLCI), Envisat (MERIS), Landsat-8 (OLI), Proba-V (Vegetation), SPOT (Vegetation), Terra/Aqua (MODIS), OrbView-2 (SeaWiFS), Suomi NPP (VIIRS). Vypočítává určitý soubor fyzikálních znaků a pravděpodobnostní kombinaci těchto znaků za účelem výpočtu souboru atributů klasifikace oblačnosti pixelů. Pro detekci mraků se používají tyto rysy: jas, bělost, výška, teplota, prostorový vzor, časová konzistence, pravděpodobnost dle neuronové sítě.

Dalším krokem je odvození vegetačního indexu NDVI pro všechny pixely, které nejsou definovány oblačností a nejedná se o vodu. Do grafu si přidejte Band Math.

if IDEPIX_CLOUD == TRUE or IDEPIX_LAND == FALSE then 0 else (Oa17_reflectance-Oa08_reflectance)/(Oa17_reflectance+Oa08_reflectance)

Posledním krokem je pak nastavení vhodného souřadnicového systému – Reprojection.

Takto vytvořený graf si uložte. Graf je pak nutné si otevřít v tzv. **Batch processing** z menu Tools.

Batch Processing : myGraph3.xml				×
File Graphs				
I/O Parameters Idepix.Olci BandMaths Reproject Write				
File Name	Туре	Acq	т	+
S3A_OL_1_EFR20170510T073503_20170510T073803_20180419T173805_0179	OL_1_EFR			
S3A_OL_1_EFR20170505T080458_20170505T080758_20180419T032733_0179	. OL_1_EFR			
S3A_OL_1_EFR20170513T075729_20170513T080029_20180420T025347_0179.	. OL_1_EFR			
S3A_OL_1_EFR20170521T075000_20170521T075300_20180421T065708_0179	. OL_1_EFR			
S3A_OL_1_EFR20170524T081227_20170524T081527_20180421T154649_0179	OL_1_EFR			
S3A_OL_1_EFR20170528T080842_20170528T081142_20180422T032713_0179	OL_1_EFR			
S3A_OL_1_EFR20170529T074232_20170529T074532_20180422T061843_0180	. OL_1_EFR			T
				٠
				7 Products
	Run remote Load Graph	Run	Clo	ese Help

V první záložce je potřeba nastavit všechny vstupní snímky.

Na kartě Idepix.Olci se ujistěte, že jste vybrali všechna pásma v části "Select TOA reflectances to write to the target product". Tímto způsobem bude výstup procesoru IdePix obsahovat již hodnoty pixelů v odrazivosti a nikoli v zářivosti.

Radiance je veličina přímo měřená přístroji dálkového průzkumu Země. Je to množství světla, které přístroj vidí z povrchu objektu. V produktech OLCI se udává jako 10-3 W.m-2.sr-1.µm-1.

Odrazivost je poměr (v procentech) množství světla vycházejícího z cíle k množství světla přicházejícího k cíli. Nemá žádné jednotky. Je to vlastnost pozorovaného objektu/materiálu.

Batch Processing : myGraph3.xml X					
File Graphs					
I/O Parameters Idepix.Olci BandMaths Reproject	Write				
Select TOA radiances to write to the target product:	Oa01_radiance Oa02_radiance Oa03_radiance Oa04_radiance Oa05_radiance Oa06_radiance Oa07_radiance Oa08_radiance				
Select TOA reflectances to write to the target product	Oa01_reflectance Oa03_reflectance Oa03_reflectance Oa04_reflectance Oa05_reflectance Oa06_reflectance Oa07_reflectance Oa08_reflectance				
Write NN value to the target product					
Alternative NN file:					
Alternative NN thresholds file:					
Compute mountain shadow					
Extent of mountain shadow:		0.9			
Compute cloud shadow					
Path to alternative NN for CTP retrieval:					
If doud shadow is computed, write CTP value to the target product					
Compute a cloud buffer					
L	Run remote Load Graph Run Close	Help			

V další záložce Band Math je potřeba definovat název a výpočet NDVI indexu. Všimněte si, která pásma ze Sentinelu 3 pro výpočet použijeme.

V předposlední záložce Reprojection nastavte projekci UTM/WGS84 (Automatic) a na poslední záložce Write můžete nastavit adresář, do kterého se uloží zpracované snímky.

🞇 Batch Processing : myGraph3.xml		×				
File Graphs						
I/O Parameters Idepix.Olci BandMaths	Reproject Write					
Target Band: NDVI						
Target Band Type: float32						
Band Unit:						
No-Data Value: 0.0						
Ex 🎇 Arithmetic Expression Editor		×				
Data sources:		Expression:				
longitude	@+@	if IDEPIX_CLOUD == TRUE or IDEPIX_LAND == FALSE then 0 else				
latitude	@ - @ (Oa17_reflectance-Oa08_reflectance)/(Oa17_reflectance+Oa08_reflectan					
pixel_classif_flags	@*@	Ť				
Oa01 reflectance	@/@					
Oa02_reflectance	(@)					
Oa03_reflectance	Constants V					
Oa04_reflectance	Operators V					
Show bands	Functions V					
Show masks						
Show tie-point grids						
Show single flags		Ck, no errors.				
		QK <u>C</u> ancel <u>H</u> elp				

Jelikož bude potřeba vypočítat průměrné NDVI za měsíc září je potřeba jednotlivé indexy seskupit do jednoho. To provedete pomocí funkce **Collocation** z menu **Raster**. Je vhodné si vždy index přejmenovat pro přehlednost.

Výpočet průměrného NDVI už pak provedete klasicky přes Band Math.

(NDVI_1+NDVI_2+NDVI_3+NDVI_4+NDVI_5+NDVI_6+NDVI_7)/7