NEŘÍZENÁ KLASIFIKACE V PROSTŘEDÍ ARCGIS PRO

- 1. Zkontrolujte zda v ArcGIS Pro máte aktivovanou extenzi Image Analyst.
- 2. V ArcGIS Pro Catalog si přimapujte adresář s družicovým snímkem a přidejte si XML soubor, který obsahuje informace o všech pásmech.

3. V menu **Imagery** je k dispozici průvodce klasifikací **Classification Wizard**. Zde si zvolíme neřízenou klasifikaci (unsupervised classification) a jako klasifikační typ pak klasifikaci založenou na pixelech. Jelikož nemáme připravené žádné klasifikační schéma, použijeme předpřipravené schéma defaultní.

Image Classification Wizard	? ↓ ∓ ×
Configure	
Classification Method	
Unsupervised	•
Classification Type	
Pixel based	•
Classification Schema	
NLCD2011	-
Output Location	
C:\Users\student\Documents\ArcGIS\Projects\M	/lyProject 📔
✓ Optional	
Reference Dataset	
	-

4. K dispozici je klasifikace ISO Cluster. Je nutné definovat počet tříd, počet iterací či minimální počet vzorků v rámci jednoho shluku. Otestujte různá nastavení, zejména v počtu tříd.

mage Classification Wizard	?	•	д	×
● ● ● ● ○ ○ ● ○ Train				
Classifier				
ISO Cluster			*	
Maximum Number of Classes				
7				
Maximum Number of Iterations				
20]
Maximum Number of Cluster Merges per Iteration				
5				
Maximum Merge Distance				
0.5				
Minimum Samples Per Cluster				
20				
Skip Factor				
				1

5. Výsledkem neřízené klasifikace budou spektrální třídy, kterým jako uživatelé přiřaďte informační charakter. Vždy je nutné z klasifikačního schématu vybrat informační třídu a tu pak označit v obraze, třída se tak automaticky přiřadí k dané klasifikované skupině. Data z mise Sentinel 2 obsahují i masku oblačnosti, tuto masku lze použít a vyselektovat z obrazového záznamu oblačnost.

6. Dalším krokem je kontrola přesnosti klasifikace. Nejdříve si necháme vygenerovat náhodné body, u kterých následně budeme provádět porovnání mezi výsledkem klasifikace a vlastní interpretací třídy.

Geoprocessing	- ↓ ×		
Create Accuracy Assessment Points	\oplus		
Parameters Environments	?		
Input Raster or Feature Class Data			
Preview_Reclass	•		
body.shp			
Target Field			
Classified	•		
Number of Random Points	50		
Sampling Strategy			
Stratified random	•		

7. Před vlastním přiřazováním tříd je nutné si zjistit hodnoty tříd klasifikovaného snímku, tuto informaci zjistíte v atributové tabulce klasifikované vrstvy.

8. Pak již stačí do bodové vrstvy pro jednotlivé body doplňovat hodnoty povrchu dle vlastního uvážení.

	body	y2 ×				Ŧ
Fi	eld: 🖣	Add	🛓 Calculate	Selection	x: 웬 Zoom To 📲 Switch ⊟ Clear 😾 Delete 클 Copy 🗧	-
	FID	Shape	Classified	GrndTruth		Γ
	0	Point	40	40		
	1	Point	80	40		
	2	Point	1	30		
	3	Point	30	-1		
	4	Point	1	-1		
	5	Point	30	-1		
	6	Point	1	-1		
	7	Point	80	-1		
	0	Delint	20	4		ίŦ

9. Po doplnění všech hodnot je možné spustit nástroj pro výpočet konfúzní matice neboli matice chyb, kde je vypočítána uživatelská a zpracovatelské přesnost klasifikace (Compute Confusion Matrix).